Group sparse canonical correlation analysis for genomic data integration
نویسندگان
چکیده
منابع مشابه
FlashPCA: fast sparse canonical correlation analysis of genomic data
Sparse canonical correlation analysis (SCCA) is a useful approach for correlating one set of measurements, such as single nucleotide polymorphisms (SNPs), with another set of measurements, such as gene expression levels. We present a fast implementation of SCCA, enabling rapid analysis of hundreds of thousands of SNPs together with thousands of phenotypes. Our approach is implemented both as an...
متن کاملSparse Weighted Canonical Correlation Analysis
Given two data matrices X and Y , Sparse canonical correlation analysis (SCCA) is to seek two sparse canonical vectors u and v to maximize the correlation between Xu and Y v. However, classical and sparse CCA models consider the contribution of all the samples of data matrices and thus cannot identify an underlying specific subset of samples. To this end, we propose a novel Sparse weighted cano...
متن کاملSparse Kernel Canonical Correlation Analysis
We review the recently proposed method of Relevance Vector Machines which is a supervised training method related to Support Vector Machines. We also review the statistical technique of Canonical Correlation Analysis and its implementation in a Feature Space. We show how the technique of Relevance Vectors may be applied to the method of Kernel Canonical Correlation Analysis to gain a very spars...
متن کاملStructured Sparse Canonical Correlation Analysis
In this paper, we propose to apply sparse canonical correlation analysis (sparse CCA) to an important genome-wide association study problem, eQTL mapping. Existing sparse CCA models do not incorporate structural information among variables such as pathways of genes. This work extends the sparse CCA so that it could exploit either the pre-given or unknown group structure via the structured-spars...
متن کاملCorrespondence between fMRI and SNP data by group sparse canonical correlation analysis
Both genetic variants and brain region abnormalities are recognized as important factors for complex diseases (e.g., schizophrenia). In this paper, we investigated the correspondence between single nucleotide polymorphism (SNP) and brain activity measured by functional magnetic resonance imaging (fMRI) to understand how genetic variation influences the brain activity. A group sparse canonical c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2013
ISSN: 1471-2105
DOI: 10.1186/1471-2105-14-245